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Abstract-Guided by the principle of virtual work, the governing equations describing the physical
behavior of a thermoelastic continuum were expressed as the Euler Lagrange equations of certain
variational principles. The differential variational principles were formulated for the thermoelastic
continuum with or without an internal surface of discontinuity by introducing the dislocation
potentials and Lagrange undetermined multipliers. These principles were shown to recover some of
the earlier variational principles as special cases, and their reciprocals were also recorded. Copyright
( 1996 Elsevier Science Ltd.

1. INTRODUCTION

Universally, the equations governing the physical behavior of a continuum consist of the
divergence (field) equations, the gradient equations, the constitutive relations, and the
boundary and initial conditions. The field equations are originally stated in global (integral)
form through the integral expressions of balance laws, and they can also be expressed
in local (differential) form under certain regularity and differentiability conditions. The
constitutive relations are given, excluding the nonlocal constitutive behavior, in differential
form under certain rules and invariant requirements. The rest of the governing equations
are almost always formulated in differential form. Alternatively, the governing equations
given in integral and/or differential forms can be elegantly expressed in variational form,
as the Euler-Lagrange equations of variational principles. The integral, differential and
variational forms are, of course, equivalent and deducible from one another. An elaborate
account of variational principles, including their existence, derivation and applications is
reported by, among many others Lanczos (1960), Oden and Reddy (1976) and Washizu
(1982),

Laying variational principles by an experienced guesswork aside, it was Biot (1956)
who first derived a variational principle for the coupled problems of thermoelasticity
starting with the basic thermodynamic laws of irreversible processes. Following Biot's
principle, a large number of variational principles is developed and used, in particular, for
deriving approximate direct solutions [see, for instance, the treatises of Boley and Weiner
(1967), Biot (1970) and Nowacki (1986) and the survey papers by Carlson (1972) and
Keramides (1983)], Among those, Herrmann (1963) presented a generalized version of
Biot's principle, as did Ben-Amoz (1965), in coupled thermoelasticity, By use of Gurtin's
(1972) method of convolution, Iesan (1968), Nickell and Sackman (1968) and Rafalski
(1968) formulated several variational principles. Besides, Batra (1989) proposed a principle
of virtual work for thermoelastic bodies and associated quasi-variational principles,
Recently, following a way developed by Biot (1956), Li (1992) derived a variational principle
corresponding to the basic equations of thermoelasticity for an anisotropic medium, In
view of the open literature cited, this paper addresses to a systematic derivation of certain
differential variational principles for linear coupled thermoelasticity,

After introducing the notation used in the paper, a summary of the three dimensional
differential equations is noted in the following section, The principle of virtual work is
applied to an anisotropic thermoelastic region and an associated variational principle with
certain constraint conditions is derived in Section 3. This two-field, differential variational
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principle is extended so as to incorporate the jump conditions in a thermoelastic region
with an internal surface of discontinuity. By introducing the dislocation potentials and
Lagrange undetermined multipliers, a unified variational principle is formulated in Section
4. The last section is devoted to concluding remarks and future needs of research.

Notation-yearning for its versatility and simplicity, the usual indicial notation is freely
used in a three dimensional (3-0) Euclidean space 3. Einstein's summation convention is
implied over all repeated Latin (l, 2, 3) and Greek (1,2) indices, unless they are placed
within parentheses. In the space 3, the xi-system is identified with a fixed, right-handed
system of Cartesian coordinates, and a comma stands for partial differentiation with respect
to the indicated space coordinate and a superposed dot for time differentiation. An asterisk
is used to indicate prescribed quantities and a bold face bracket to show the jump of an
enclosed quantity across a surface of discontinuity. The symbol net) refers to a regular,
finite and bounded region n of the space 3 at time t, Q denotes the closure of the region n
with its boundary surface an, and Q x T represents the Cartesian product of the region n
and the time interval T = [to, t j ). Further, C1mn) refers to a class of continuous functions
with its continuous derivatives of order up to and including (m) and (n) with respect to the
space coordinates and time, respectively. Subscripts (m) and (h) are used to distinguish the
denotations involving with the mechanical and thermal terms.

2. FUNDAMENTAL THREE-DIMENSIONAL DIFFERENTIAL EQUATIONS

A brief summary of the fundamental equations of thermoelasticity is given herein for
ease of reference [e.g., Boley and Weiner (1967)]. Consider a regular, finite and bounded
region n occupied by thermoelastic continuum in the space 3. The closure of region is
denoted by Q and its entire boundary surface by an which consists of the complementary
regular subsurfaces (anu , an,) or (ang, cnq). The term regular surface is used in the sense
of Kellogg (1929). The region is referred to a fixed, right-handed system of Cartesian
coordinates XI. The domain of definitions for all the functions of the space coordinates Xi

and time t is denoted by Q x T. Now, the differential equations of thermoelasticity are
expressed by [e.g., Mason (1966)]:

Divergence equations (Cauchy's first and second laws of motion and the heat con­
duction equation)

Lim, = t ii.1 + p(./; - a,) = 0 inQx T (I a)

Ci1ktlk = 0 inQx T (1 b)

and

L UIi = q'l+ph+eo~ = 0 inQx T (2)

with the definitions

til symmetric components of the stress tensor
uj components of the displacement vector
aj components of the acceleration vector (ii)
p mass density
j; components of the body force vector per unit mass
Cljk components of the alternating tensor
qi components of the heat flux vector
h heat source per unit mass
IJ entropy density
eo constant, positive, reference temperature; temperature of natural state III which

stresses and strains do not exist.

Gradient equations (the strain-displacement relations and the heat strain-temperature
relations)
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with the definitions

Vhl = e-8· = 0
I I ,I

inQx T (3)

eiJ components of the symmetric strain tensor
8 temperature increment from the reference temperature
ei components of the heat strain vector.

Constitutive relations

K im) _ aG _ 0 . 1'\ T
ii - tlj - -;-- - In ~~ X

lie'l

and

cG
K(hl = '1 + c8 = 0 in Q x T

cG
K(h l = q+ - = 0 in Q x T

I ! eel

(4)

(5a)

(5b)

with the free energy function A. the dissipation function F and the thermoelastic function
G of the form

G(elj,8"e,) = A(elj,8,)+F(e,). (6)

Looking to the linear constitutive relations, the quartic form of the functions is
expressed by

A = ~(c"kleiJekl-pC,0,~182)-I'iJeiJ8

F= ~kljeie" (7)

Here, Ciikl stands for the second order elastic constants measured at constant field and
temperature, l.iJ for the thermal stress constants relating an increase in temperature to a
stress at constant strain or field, kiJ for the symmetric, positive semidefinite conductivity
tensor, rx = pC,.0; 1 for the linear thermal expansion coefficient and pC,. for the specific
heat per unit volume. Also, the usual symmetry relations for the material constants of the
form

C'lkl = C,lkl = Cklil' 1." = ;'1' in Q x T (8)

are written. In view of (4)-(7), the linear constitutive relations for the components of the
stress tensor and the heat flux vector and for the entropy density in respective forms

(9)

and

M(hl = '1- (/"Ai + rx8) = 0 in Q x T

inQx T (10)

are written. In (7)-(10), the elastic constants refer to the free constants since they describe
the strain-stress relations when the thermal field is absent, while the remaining constants
refer to the clamped constants [Venkataraman et al. (1975)].
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and

Boundary conditions
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Ljlllli = I,-Ij= 0 on ("0, x T

L'(jll = q-q* = 0 on rOq x T

L'(j'I/I = £1-0* = 0 on rOo x T

(lla)

(II b)

(12a)

(12b)

together with the radiation condition of the form

(l2c)

where k is a positive constant ranging from zero for an adiabatic boundary to infinity (i.e.,
11 = 0) for an isothermal boundary, and

I; = n,1i;

q = l1iq,
stress vector
normal components of the heat flux vector across the boundary surface ao.

and

Initial conditions

Jump conditions

M,!,IIIII = u,(x;, to) - ["'((x,) = 0 in OUo) (13a)

(13b)

(14)

1)11I
1 = l";[1,J = 0 on Sx T (ISa)

li/llll } = lu,] = 0 on Sx T (ISb)

and

1 1111 = l-,[Qi] = 0 on Sx T (l6a)

l i1,ol = [£1] = 0 on Sx T (16b)

where S denotes a fixed, internal surface of discontinuity in the region 0 and [", is the unit
normal vector directed from the positive side of the discontinuity surface to its negative
side, and the conventional notation for boldface brackets is introduced, namely,

(17)

in which Xi- and X,- are the values of X, from the positive and negative sides of S.
Governing equations---the aforementioned eqns (I )-( 16) completely describe the

thermo-mechanical behavior of a nonlocaL nonpolar. elastic anisotropic continuum. The
relativistic as well as quantum effects are excluded. The boundary and initial conditions
(11)·-( 14) were shown to be sufficient for the existence and the uniqueness of solutions for
the initial-mixed boundary value problems defined by the linear governing eqns (1)-(3)
and (9)-( 16).
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3. THE PRINCIPLE OF VIRTUAL WORK AND AN ASSOCIATED DIFFERENTIAL
VARIATIONAL PRINCIPLE

Among the general principles of mechanics, the principle of virtual work is chosen as
the starting point in deriving variational principles of thermoelastic media. The principle
of virtual work may be expressed as an assertion of the form

with

bLq = -bI.+bU+b*W = 0

bI. = [ (t,lbe,,+qjbe,)dV
~n

bU= I. [pU;-a,)bu,+(0 oli+ph)be]dV
.0

b* W = I' (t' * bu, +q* be) dS
~ (~O:

(18a)

(18b)

where b* W is the virtual work done by the external mechanical and thermal forces and an
asterisk is placed upon this b* to distinguish it from the variation operator b. Inserting (3)
into (l8b), carrying out the indicated variations, making use of the fact that the operation
of variation commutes with that of differentiation, applying the divergence theorem for the
regular region n+an and then rearranging terms in the surface and volume integrals, one
arrives at the variational equation of the form

bLq [Aq = Uj, A] = r (L)ml bU j+L Uri be) d v - f (L7,m, 6U j+ L~, 6e) dS = 0 (19)
Jo en

in which Cauchy's second law of motion [i.e., the symmetry of the stress tensor (lb)] is
taken into account. Since (19) holds for any variations of the admissible state Aq , from
setting all variations to zero, one obtains

(20)

in terms of the quantities defined by (I), (2), (II), and (12). This is a two-field differential
variational principle which leads to Cauchy's first law of motion, the heat conduction
equation and the associated natural boundary conditions of traction and heat flux. The
rest of the fundamental equations of thermoelasticity remain as the constraint (subsidiary)
conditions of the admissible state Aq • Next, (19) is integrated over the time interval
T = [to, t I) with the result

M,lAq ] rbLqdt=f [-bI.+bK+6H+iJ*W]dt=0
JT T

which yields, as before, the two-field variational principle (30) under the condition

bU j = O. bO = O. in Q(to) and Q(tl)'

(21 )

(22)

In this equation. the variations are assumed to obey the axiom of conservation of mass
[i.e., b(p dr) = 0] and the kinetic energy density K ( = ~piljil,) with its first variation for the
region Q as -
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[) f d! r Kd1" = - r d! f pii,[)uidV= f (fJU-6H)d!
• T .n Jr.n r

(23)

is introduced under (22).
Yearning for a variational principle with as few constraint conditions as possible which

is valuable from the standpoint of computational economy, the constraint conditions
imposed upon the admissible state A" are now being removed. To begin with, consider a
fixed, internal surface of discontinuity S in the region Q and the associated jump conditions
(15) and (16). To incorporate (15) and (16) into (21), following the procedure shown by
Friedrichs (1929) [see also Courant and Hilbert (1953)], the dislocation potentials of the
form

are added to (18) as

,111 =J~.iJ.I"'N' ,121
1 1 -f'· ~ 1., f. iJ'!11!1 dS

.'
(24)

() L. = ()L I + 1",1~: d!
• I

(25)

where i" and i. are the Lagrangian undetermined multipliers. Performing the indicated
variations in (25) and using the generalized version of the divergence theorem,

LXi' d J/ = In \1",'1., dS - L1";['1.,] dS (26)

one finally arrives at the variational equation of the form [cf Sarigiil. Dbkmeci (1984)],

" , r ~ " }IYJ
U, = 1d! Jt 'll (CUI I)U, + L lhl (5{)) d J'-I. .(Lt"N' 6u i + L'(ill 68) dS

III T . "n "l n .)

In (27), since the variations of A:/ J are arbitrary, one reads (l) and (2) in n x T and (II a)
and (l2a) on (i'Q y - S), and since all the surface variations of i., and i. are now free, one
has ( 15b) and (16b) and the conditions on S x T, namely

(28)

which gives the Lagrangian multipliers as

(29)

where the familiar symbolism <>indicates the mean value of enclosed quantity, namely,

(30)

is introduced. Thus after substituting (29) into (27) and rearranging terms, one has the
differential variational equation of the form
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bL, {I., l = f dt ±{r (Lim) bu, + Lilli be) d v - f .(Li(m l bu, + L~,) be) dS}!XI
T y. = 1 Jo (~n \"
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+Idt Lr, [[t,,]<bu)-<bti/)[u,] + [qJ<be)-<bq;)[e]} dS = 0 (3la)

with

(31 b)

which leads to Cauch's first law of motion (I), the heat conduction equation (2), the
boundary conditions (II a) and (l2a), and the jump conditions (15) and (16), as its Euler­
Lagrange equations, under the constraint conditions (lb), (3)-(5), (lIb), (12b), (13), (14),
and (22): conversely, if (1a), (2), (lla), (l2a), (15) and (16) are mel. the differential
variational principle is evidently satisfied.

Although Friedrichs's transformation (or the Legendre transformation or the invo­
lutory transformation) [see e.g.. Mura and Koya (1992)] is used in (41), a variety of
methods is available in removing constraint (subsidiary) conditions in continuum physics.
Noteworthy methods are due to Morse and Feshbach (1953) who advocated the adjoint
equation method or the method of the mirror equation, Biot (1970) who introduced a quasi­
variational method in Lagrangian thermodynamics and Gurtin (1972) who put forward the
method of convolution in elastodynamics. Nevertheless, Friedrichs's transformation is
widely used in mechanics, as is also implemented herein, owing to its versatility and rather
easy applications [e.g., Chien (1984), Mang, Hoftetter and Gallagher (1985), and Tiersten
(1969) who presented a lucid description of this transformation].

4. GENERALIZED VARIATIO]\iAL PRINCIPLES

Starting with the principle of virtual work, the differential variational principle (31)
with certain constraint conditions is derived in the previous section. These constraint
conditions which make the choice of trial (approximating or coordinate) functions tedious,
are now relaxed again by use of the involutory transformation. Accordingly, the Lagrange
undetermined multipliers (11,/, II" X" X)IXI are introduced so as to incorporate (3)-(5), (11 b),
(l2b), (13) and (14) and the dislocation potentials (24) and those given by

~:~IXI = [(Il"L:;'Hj)X1dV
.0

~~~IXI = J' (Il,Li M
)!X! d V

n

in the volume,

~I.'(XI = f (X L*lm!)lxl dS
1J . I III

tnul7 )

on the surface are added to (18), namely,

(32)

(33)
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+ Idt fa 6HdV+6 ldt fa KdV+ Idt In 6* WdSr+6I dt fY'i[Ull +;.[8]) dS

+ 61 dt ±{r (lliIL:;") + Ilia!)) d V + r X,Lt l
"') dS + r. XL(;I)I! dS}ln = 0 (34)

-.IT J.=1 In Jen" J(n/J

in which (I b), (4) and (5) are considered and the multipliers represent a field of additional
independent variables. As before, substituting (3) into this equation, carrying out the
indicated variations and using the generalized Green-Gauss theorem, one finally obtains
the variational equation of the form

+ r .L* lnlI 6u dS+J' L* 60dS}"1 =0I, / , .. (lrl
~ tn. dl lhl

(35)

in terms of the denotations (I )-(5), (II), (12), (15) and (16). In (35), the volumetric and
surface variations of Lagrange multipliers are free in the region n, on the surface portions
of ?n and on the surface of discontinuity S, and hence, with the aid of (4) and (5), the
Lagrange multipliers are identified by

?G
fl, = - -:;-- = q"

CI!,

(36)

Substitution of (36) into (35) gives the differential variational of the form

and

(37a)

(37b)

+ In", [(U i - un btill'l dS + In,,, [(l"JiI - til 6UJI>1 dS

+ rr,nti/l<6u,)-<6t,/)[UJJ dS..\

and

(38a)
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bL~?,) = ( {(q,.i + Sol] + ph) be + (ei- e, i) bqi + (q, + ~G)bei}(') d VJo,,) e,

3945

which generates (I a), (2), (3), (5b), (11), (12), (15) and (16) under the constraint conditions
(I b), (Sa), (13), (14) and (22), as its Euler-Lagrange equations. In (37), the term L(,l) which
represents the heat flux boundary conditions should be replaced by L'tJ,), of (l2c) for the
radiation condition.

Keeping in mind the salient features of variational principles with as few constraints
as possible, certain constraint conditions in (38) are removed below. To remove the consti­
tutive constraint (Sa), the dislocation potential of the form

(39)

is introduced. The initial conditions (15) and (16) are relaxed by the dislocation potentials
of the form [see, Tiersten (1968) and Chen (1990)]

(40a)

and

(40b)

The dislocation potentials for (13) and (14) are obtained by simply using the Friedrichs's
transformation in the time domain. This important point is discussed very thoroughly by
Tiersten (1968) who was the first to find the dislocation potentials for the initial conditions
in deriving a transformed version of Hamilton's principle, as did Chen (1990) who made
the principle of total virtual action, the new foundation for all the time-integral variational
statement/principles. Also, Simkins (1978, 1981) and Wu (1977, 1980) investigated a unified
treatment of some initial value problems, including examples of application by use of finite
elements. Now, by adding (39) and (40) to (37), one obtains a generalized variational
principle under the constraint conditions (1 b) and (22) as

with

-

bL4 {AA} = bLc;+ I (bL~~)") = 0
:t= I

(41a)

(4Ib)

Variational principle-a regular, finite and bounded thermoelastic region Q+aQ+s
with its piecewise smooth boundary surface cQ,[ = cQu u cQ" aQu (l aQ, = ¢; = aQA u 8Qq,
rQ" (l cQq = ¢JI'), its closure Q (= QuaB) and its internal surface of discontinuity S is
considered in the space ~, and a differential variational principle (41) is given for this
region. Then, of all the admissible states A4 which satisfy the symmetry of stress tensor
(I b) and the condition (22) as well as the usual continuity, differentiability and existence
conditions of field variables, if and only if, that admissible state AA which satisfies the
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stress equations of motion (I a), the heat conduction equation (2), the strain-displacement
relations (3a), the heat strain-temperature relations (3b), the constitutive relations (4), (5),
the natural boundary conditions (II), (12), the natural initial conditions (13), (14) and the
natural jump conditions (15), (16) is determined by the differential variational principle
(41), 6L4{A4 } = 0, as it is a Euler-Lagrange equation. Conversely, if the aforementioned
equations are met the differential variational principle is evidently satisfied.

Recovered as special cases of (41), some of the earlier variational principles are now
cited. The first special case is a fully linear, differential variational principle in which the
constitutive terms (K;;"I, Kilt), Kiltl ) of (4), (5) are replaced by their linear versions
(Ali;"l, Mlhl

, Mi h
') of (9), (10) in (41). Another noteworthy version is a variational principle

of the form

6Lu {Au ] = r df(t5LI~~1+6L~!J) = 0
• T

with the denotations of the form

(42)

6V~;" :N;;"} r (Lin" ()u,+ Li;'" bt,! + Ki;'" 6e,) d V + r L~lm, 6f, dS + f. L,*lm
,
6u, dS

&.IU .., (~Q" d1,

(43a)

6V;?:N;;': I~ (L(hI61J+L;!"6q,+K;hii5e,+K(hli5'1)dV+J~ L0li i58dS+f L'0,)lJ6qdS
.. n l'n'l (~nn

(43b)

and

(44)

for the thermoelastic region Q+?Q without a surface of discontinuity. The variational
principle (42) is the counterpart of the Hu-Washizu principle [see e.g., Washizu (1982)] in
coupled thermoelasticity. Similar variational principles are given by Herrmann (1963), Ben­
Amoz (1965), Lardner (1963), Rafalski and Zyczkowski (1969), and Dokmeci (1978, 1980),
and discussions of these by Lukasiewicz (1989). Besides, a number of variational principles
analogous to those of linear elasticity can be readily derived from the generalized variational
principle (41) [e.g., Dokmeci (1979,1988) and Chien (1984)]. In the remaining part of this
section, variational principles involving only certain field variables are given.

Denoting its admissible state Ac :f" qi}' a variational principle involving only stresses
and heat fluxes is recorded in the form

i5L r AI = I~ df ~ r. (Vn" i51 + Lilli i5q) d V1i'1 = 0
(l (J L l II /1 I I J •

'" T :.: = I -.In

Another variational principle

(45)

(46)

is given, which operates on the mechanical displacements and the temperature field. Besides,
the reciprocal of (31), with its admissible state AD = (eli' f,; c" q, '1}, as
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r dtff (Klm'6e··+Klh'6e+K 6'1)dV+f L*lm)6tdS1/ II I ./ (h) III I

~1· n ;01'
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is written.

5. CONCLUSION

Starting with the principle of virtual work and augmenting it through the dislocation
potentials and Lagrange undetermined multipliers, the differential variational principles
bLq{Aq} = 0 in (19), bL/{A f } = 0 in (21), bL,{A,} = 0 in (27), bLc;{AcJ = 0 in (37) and
bL~{A~} = 0 in (41) are derived. The latter, being the most general, is specialized so as to
obtain the variational principle bLM{AM } = 0 in (42), (5Lc{Ac} = 0 in (45), bLr{Ar} = 0
in (46) and bLD { AD] = 0 in (47). The differential variational principle (41) generates all the
governing equations of thermoelastic continua with a fixed, internal surface ofdiscontinuity,
including the natural initial and jump conditions, as its Euler-Lagrange equations. This
variational principle is quite general, and has certain appealing features in succinctly
summarizing the governing equations of continua, consistently deducing the lower order
equations and, in particular, providing a standard basis for computation. Since the con­
straint conditions are relaxed, (41) allows one to make simultaneous approximation upon all
the field variables. Thus, the burdensome choice of trial functions is relieved for complicated
and/or time-dependent boundary conditions. The variational principles presented agree
with and recover. as already indicated, some of earlier variational principles in elasticity
and thermoelasticity in which the initial and jump conditions are, in general, left out of
account.

Contemplating variational principles for polar, nonlocal, relativistic and alike continua
[e.g., Dokmeci and Altay Askar (1994)] can be constructed, as in the derivation of the
variational principle (41), since Friedrichs's transformation used herein possesses con­
siderably broader applicability to holonomic as well as nonholonomic conditions [e.g.,
LanclOS (1964)]. Besides, the derivation can be extended for variational principles of
thermoelastic continua having more than one internal surface of discontinuity and/or a
moving internal surface of discontinuity. Also. the incremental motions as well as the
geometrical non-linearities can be similarly treated.

Salient extensions cited above and the development of approximate direct solutions in
conjunction with the variational principle (41) are the topics of continuing studies, and will
be reported later.
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